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Bifurcation phenomena in the optimal velocity model for traffic flow
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In the optimal velocity model with a time lag, we show that there appear multiple exact solutions in some
ranges of car density, describing a metastable uniform flow, a metastable congested flow, and an unstable
congested flow. This establishes the presence of subcritical Hopf bifurcations. Our analytical results have
implications for continuum traffic flow, such as hysteresis phenomena associated with discontinuous transitions
between uniform and congested flow.
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In recent years there has been considerable interest in
formation of nonuniform or congested flows of traffic. N
merous experimental investigations of the congestion h
accumulated over the last decade~e.g.,@1,2#!, in addition to
those made earlier@3,4#. The phenomenon has been d
cussed in a variety of traffic flow models, such as car follo
ing models@5–11#, cellular automaton models@12,13#, and
statistical~kinetic! models@14#. A certain class of these mod
els has predicted a discontinuity in the correlation diagr
between macroscopic averages of car density and traffic
called thefundamental diagram: for low mean densities, uni
form flow is realized, while above some critical density
becomes unstable for infinitesimal perturbations and spo
neously generates congested flow. One expects that the
parent ‘‘first-order phase transition’’ between uniform a
congested flows is associated with a bifurcation of soluti
for the underlying model equations@15#.

In this report, we consider the bifurcation phenomena
an optical velocity~OV! model with a time lag@7–11# for a
circular lane. By three of the present authors it has b
shown recently@10# ~see also Ref.@11#! that the model de-
scribed by differential-difference equations of Newe
Whitham type@7,8# admits exact solutions describing co
gested as well as uniform flows. The use of this mod
therefore, makes it possible to discuss the bifurcation p
nomenonanalytically rather than numerically. Investigatin
the exact solutions carefully, we show that the subcriti
Hopf bifurcation phenomenon@16# is the dynamical origin of
the discontinuous transition.

A bunch of cars in the congested flow consists of so
number of slowly moving cars that cluster together to ma
a high density region in the lane. Cars move relatively f
outside the bunches, yielding one or more low density
gions. The familiar ‘‘stop-go’’ like behavior is realized in th
congested flow, which is steady in the sense that the beha
of the nth car is exactly the same as that of the preced
1063-651X/2001/64~4!/047102~4!/$20.00 64 0471
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(n21)th car except for a certain time delay. Thus, the ma
mum (vmax) and the minimum (vmin) values of velocities
become the same for all cars. The nonvanishing amplitud
velocity, Dv[vmax2vmin , may characterize the congeste
flow.

In our model, the congested flow can be described
exact solutions. We observe that in some ranges of den
three exact solutions coexist; a metastable uniform flow
metastable and unstable congested flows. For these solut
Dv of the metastable congested flow is larger than that of
unstable flow, whileDv50 for the uniform flow. TheDv
values are functions of the mean headwayh over the lane
and can be used to establish the bifurcation to be of subc
cal type. In a numerical simulation, one of the metasta
solutions is realized depending on the initial condition. T
discontinuity in the traffic flux mentioned above is inte
preted as the hysteresis phenomenon@2,3,13,17# associated
with the subcritical bifurcation. The coexistence of me
stable uniform and congested flows and the hysteresis
nomena were noticed earlier in simulations. However, let
emphasize here that only an analytical method can show
origin of the phenomenon, the presence of the unstable s
tion associated with the subcritical bifurcation.

The system of first-order differential-difference equatio
@9,10# we consider is given as

ẋn~ t1t!5V@Dxn~ t !#5j1h tanhF S Dxn~ t !2d

2s D G , ~1!

wherexn andDxn5xn212xn correspond to the position o
thenth car and its headway, the distance between the car
the preceding (n21)th car.t is the time lag to reach the
optimal velocityV(Dx) when the traffic flow changes. Th
OV function V(Dx) is described by a hyperbolic tange
with four positive parametersj, h, d, and s, which are
chosen to satisfyV(0)5j2h tanh@d/(2s)#50. We impose
©2001 The American Physical Society02-1



n
w
ta

-

-

ed

e

s

-
b

cu

on

ze

-
he

th

st
ol
ll

io
E

m-

ram-
set
the

-
. It

en
u-

try

m-
-

ll
r or

ub-

BRIEF REPORTS PHYSICAL REVIEW E 64 047102
periodic boundary conditionsxn1N5xn2L, whereN is the
total number of cars on a circuit of lengthL. All the model
parameters (t,j,h,d,s,N,L) treated in this report are take
to be dimensionless. It is sufficient for our purpose, as
will not directly compare our results with experimental da

The trivial solution of the system~1! corresponds to the
uniform flow xn

(0)(t)5V(h)t2nh, where h5L/N is the
common headway. A linear analysis@9,18# shows that for
2H01d,h,H01d an initially prepared uniform flow be
comes unstable and a congested flow develops. HereH0 is
determined by

t

tc

sinp/N

p/N
5cosh2F H0

2s G , ~2!

wheretc[s/h is the critical time lag. In order for the uni
form flow to decay,t should satisfy the conditiont.tc . As
shown in Ref.@10#, the resulting congested flow is describ
by an analytical function of the form

xn~ t !5Ct2nh1A ln
q0„nt2~2n11!b1d,q…

q0„nt2~2n11!b2d,q…
, ~3!

whereA,b,n,C,d are constants to be written in terms of th
model parameters, as shown below.q0(v,q) is one of the
theta functions with the modulus parameterq. In this report
the conventions in Ref.@18# are used for the theta function
(q0 ,q1). It follows from the periodicity q0(v11,q)
5q0(v,q) that an integer 2bN5nb turns out to be the num
ber of bunches in the circular lane. The whole lane may
divided intonb regions. The ‘‘wavelength’’N/nb is approxi-
mately equal to the number of cars within a pair of conse
tive high and low density regions. The width parameterd,
which ranges in 0,2d,1, determines the proportion of low
density region in a wavelength: 2dN/nb@(122d)L/nb# is
roughly equal to the number of cars in a low~high! density
region. In this sense, by replacing 2d by 122d, we ex-
change the lengths of the two regions. Upon differentiati
the third term on the right-hand side of Eq.~3! gives rise to
pairs of kinks and antikinks connectingvmax andvmin .

A crucial point to observe the bifurcation is to recogni
the rich structure of the exact solution~3!. Stable uniform
flow always appears in the regionH0,uh2du. Unlike this,
there must be critical values of the headwayd6H1 (H1
.H0) such that the periodic solutions given by Eq.~3! do
not exist for uh2du.H1 @19#: no congested flow is gener
ated if the mean density is too high or too low. Thus, t
region forh can be divided into five parts:~I! h.H11d, ~II !
H01d,h,H11d, ~III ! 2H01d,h,H01d, ~IV ! 2H1
1d,h,2H01d, and~IV ! 2H11d.h. We have uniform
flow solutions over the whole region; they are unstable in
region~III !. There are no congested flow solutions in~I! and
~V!; the stable ones are known to appear in~III !. In ~II ! and
~IV !, the stability of the uniform flow is confirmed again
small perturbations only. Therefore other metastable s
tions than the uniform flow may exist. Actually we sha
show that metastable as well as unstable periodic solut
do coexist in these regions and that both are described by
~3!.
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To this end, we discuss the relations of the model para
eters (t,j,h,d,s,N,L) in Eq. ~1! with those in the ansatz
~3!, (A,n,b,d,q,C,h). As shown in Ref.@18#, we have the
relationsL5Nh, s5A, b5tn, as well as

h2d5A ln
q1~2d2b,q!

q1~2d1b,q!
, ~4!

h5
Ab

2t

d

db
ln

q1
2~b,q!

q1~2d1b,q!q1~2d2b,q!
, ~5!

C2j52
Ab

2t

d

db
ln

q1~2d1b,q!

q1~2d2b,q!
. ~6!

Inclusion of the relation 2b5nb /N with a givennb makes
seven relations between the above two sets of seven pa
eters: thus, we may construct exact solutions for a given
of the model parameters. Here we restrict ourselves to
casenb51, for simplicity. ~See Ref.@18# for solutions with
nbÞ1.! The equationb5tn is Whitham’s dispersion rela
tion @8#, an important characteristic of the delayed model
implies ẋn21(t)5 ẋn(t12t): 2t is the delay time for a car to
repeat the behavior of the preceding car. Note thath2d and
C2j change their signs whileh remains invariant when we
replace 2d by 122d.

Let us show the presence of multiple solutions for a giv
set (t,j,h,d,s,N,L). To obtain the parameters of the sol
tions, one first fixes (A,n,b) using 2bN51. As the modulus
parameter, we usek52p/( ln q) instead ofq. By solving
Eq. ~5!, d is computed as a function ofk. It is given by Eq.
~18! in Ref. @18#. As a result of the property ofd discussed
earlier, it has two branchesd1(k) and d2(k) such that
2d1(k)5122d2(k). Then substitution ofd(k) into Eq. ~4!
gives us a functionh(k). The result is shown in Fig. 1.

As shown in Fig. 1, the graph has the axis of symme
h5d. It should be noted thatk(h) becomes a two-valued
function in the regions~II ! and~IV !. In each region, we have
two periodic solutions for a given set of the model para
eters. Consider the region~IV !. We have confirmed by nu
merical simulations that one solution~denoted byA on the
solid line in Fig. 1! is metastable, while the other~denoted by
B on the broken line in Fig. 1! is unstable: when a sma
perturbation is added, the latter goes down to the forme
to a uniform flow with the same value ofh. Therefore, there
are altogether three solutions in this region, indicating a s
critical bifurcation. The bifurcation pointsh5d6H0 are de-
termined from Eqs.~4! and~5! for k50, which end up with
Eq. ~2!. The value ofk for the critical valuesh5d6H1 is
determined by

FZ~B!1
cn~2B!1dn~2B!21

sn~2B!
2

Z8~B!

2Z~B!G
3F t

Btc
2

cn~2B!1dn~2B!

sn~2B! G
5

Z~2B!2Z~B!

sn~2B!
2

Z8~B!

2
, ~7!
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BRIEF REPORTS PHYSICAL REVIEW E 64 047102
where B52Kb (K is the complete elliptic integral of the
first kind! andZ is the Jacobi zeta function.

As an ‘‘order parameter,’’ we may take the velocity am
plitude Dv of the relevant flow as a function ofh. In Fig. 2
we have drawn the analytical results with the solid and b
ken lines, which agree with the numerical simulations sho
with the small squares. The simulations are done by gra
ally increasingh and the results forDv change as indicated
by the arrows: when we increaseh, there is a jump inDv at
h5d2H0, from a uniform flow to a congested flow; a

FIG. 1. The relation between the mean headwayh and k. The
solid and broken lines correspond to~meta!stable and unstable so
lutions, respectively. Here the parameters aret50.582 28,
j5tanh 2, h51, d52, s51/2, and N520, for which H0

50.389 78 andH150.562 90.

FIG. 2. Theh-Dv relation from the exact solution, compare
with a numerical study. The simulations were done by increasinh
as indicated by the arrows; the results are plotted with the sm
squares. We observe a hysteresis phenomenon.
04710
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h5d1H1 there is another jump from a congested flow to
uniform flow. ~Although not indicated in the figure, jump
occur at h5d1H0 and h5d2H1 when we decreaseh.!
This is the hysteresis phenomenon associated with the
critical bifurcation. It is appropriate to explain how we pe
formed the simulations. Suppose we have a stable flow
result of the simulation at a value for the mean headwayh,
sayh0. Taking a snapshot of the flow, we know the positio
of cars at the time. Then we measure the headway of e
car and increase it byDh, and that configuration is used a
the initial condition for the simulation withh5h01Dh. This
procedure gives the results for the region~II !, staying on the
curve for the congested flow: it is important to keep theDh
small enough since the results depend on the initially p
pared configurations. Now we discuss the fundamental
gram. In our numerical simulations, we observe a transit
from uniform flow to congested flow described by a on
bunch analytical solution. In this process the system exhi
a series of transitions through which it comes close to c
figurations for multibunch solutions with successively few
bunches@10#. Each multibunch state lasts for a certain tim
interval. So, in drawing the fundamental diagram, we m
have to take account of these intermediate states as w
Although it is an interesting problem, we do not consid
such effects here.

The fluxQ may be defined by the number of cars pass
through some reference point in a certain time interval. Fo
uniform flow, it is given by the product of the density 1/h
and the common velocityV(h), Q5V(h)/h. We calculate
the flux of a congested flow as follows. Since high dens
regions are moving backward with a velocityvB , it will be
convenient to take the rest frame of the density waves.
periodT0 defined for a car to make a round trip in the re
frame is given byT051/n52tN, where we have used
Whitham’s relation@8#, b5tn51/(2N). Since the average

FIG. 3. The fundamental diagram for traffic flow. The dotte
line is for uniform flow, while the solid and broken lines are fo
~meta!stable and unstable congested flow, respectively.
ll
2-3



at

s
es

n
ul
tin
iv

ie

s
n

e

ear
s-
ri-

ns
o-
ta-
ob-
pe
e

of

, at
els

ter
re
s-

BRIEF REPORTS PHYSICAL REVIEW E 64 047102
velocity of cars in the original coordinate isL/T02vB , the
flux Q is given byQ5(L/T02vB)/h51/(2t)2vB /h. Let us
calculatevB by considering the repetitive spatiotemporal p
tern in a congested flow:xn21(t)5xn(t12t)12vBt. This
implies that thexn has the same time dependence asxn21

apart from a time delay 2t and a distance 2vBt. It follows
thatvB5h/(2t)2C. Therefore, one obtains a simple expre
sion forQ, Q5C/h. As discussed previously, one calculat
the parameterC as a function ofk using Eq.~6!. Together
with h(k), it givesC(h). Our analytical results are shown i
Fig. 3: discontinuities in the traffic flow show up as a res
of a hysteresis phenomenon. Since the size of the discon
ous jumps may be determined analytically, a quantitat
comparison is also possible.

A few comments are in order.~1! The presence of the
subcritical Hopf bifurcations naturally defines the boundar
between~I! and~II ! and between~IV ! and~V!. ~2! In Fig. 3,
the discontinuities in the low density side appear after pa
ing through the maximum uniform flow. Since the positio
of the peak is determined by the OV function, we may tak
B
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set of model parameters so that the discontinuities app
before the peak.~3! As mentioned above, we should inve
tigate multibunch effects in detail before making a compa
son with experimental data.

In summary, the presence of subcritical Hopf bifurcatio
in a delayed optimal velocity model which admits exact s
lutions is established by showing the coexistence of me
stable and unstable solutions. Although our results are
tained in a specific OV model, we believe that any OV ty
model will show the subcritical bifurcations. Actually, w
have confirmed by numerical simulations the presence
multiple stable solutions for the model given byẍn

5a@V(Dxn)2 ẋn# which was studied in@17# in this context.
Therefore, our results given here should be considered
least qualitatively, to be a universal feature of OV mod
describing spatiotemporal patterns.

Parts of our numerical work were done with the compu
facilities of Yukawa Institute for Theoretical Physics. We a
grateful to K. Nishinari, H. Hayakawa, and Y. Ono for di
cussions and suggestions.
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