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Bifurcation phenomena in the optimal velocity model for traffic flow
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In the optimal velocity model with a time lag, we show that there appear multiple exact solutions in some
ranges of car density, describing a metastable uniform flow, a metastable congested flow, and an unstable
congested flow. This establishes the presence of subcritical Hopf bifurcations. Our analytical results have
implications for continuum traffic flow, such as hysteresis phenomena associated with discontinuous transitions
between uniform and congested flow.
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In recent years there has been considerable interest in tl{@— 1)th car except for a certain time delay. Thus, the maxi-
formation of nonuniform or congested flows of traffic. Nu- mum (.0 and the minimum «.,,,) values of velocities
merous experimental investigations of the congestion havbecome the same for all cars. The nonvanishing amplitude in
accumulated over the last deca@eg.,[1,2]), in addition to  velocity, Av=v . vmin, May characterize the congested
those made earlief3,4]. The phenomenon has been dis- flow.
cussed in a variety of traffic flow models, such as car follow- In our model, the congested flow can be described by
ing models[5—11], cellular automaton mode[42,13, and  €xact solutions. We obserye that in some ranges of density
statistical(kinetic) modelg14]. A certain class of these mod- three exact solutions coexist; a metastable uniform flow and
els has predicted a discontinuity in the correlation diagran{netastable and unstable congested flpws. For these solutions,
between macroscopic averages of car density and traffic fludv of the metastable congested flow is larger than that of the
called thefundamental diagramfor low mean densities, uni- unstable flow, whileAv =0 for the uniform flow. TheAuv
form flow is realized, while above some critical density it values are functions of the mean headwaypver the lane
becomes unstable for infinitesimal perturbations and spontaind can be used to establish the bifurcation to be of subcriti-
neously generates congested flow. One expects that the a§a! type. In a numerical simulation, one of the metastable
parent “first-order phase transition” between uniform andSolutions is realized depending on the initial condition. The
congested flows is associated with a bifurcation of solutiongliscontinuity in the traffic flux mentioned above is inter-
for the underlying model equationas]. preted as the hysteresis ph_enomeﬁbﬂ,l?»fl] associated

In this report, we consider the bifurcation phenomena inwith the subcritical bifurcation. The coexistence of meta-
an optical velocity(OV) model with a time lag7—11] for a stable uniform and congested flows and the hysteresis phe-
circular lane. By three of the present authors it has beeRomena were noticed earlier in simulations. However, let us
shown recently10] (see also Ref[11]) that the model de- emphasize here that only an analytical method can show the
scribed by differential-difference equations of Newell- Origin of the phenomenon, the presence of the unstable solu-
Whitham type[7,8] admits exact solutions describing con- tion associated with the subcritical bifurcation.
gested as well as uniform flows. The use of this model The system of first-order differential-difference equations
therefore, makes it possible to discuss the bifurcation phe[—galo] we consider is given as
nomenonanalytically rather than numerically. Investigating
the exact solutions carefully, we show that the subcritical N _ _

Hopf bifurcation phenomendii6] is the dynamical origin of Xn(t7) =VIAXa(D)]= &+ ntan}{
the discontinuous transition.

A bunch of cars in the congested flow consists of somevherex, and Ax,=Xx,_;—X, correspond to the position of
number of slowly moving cars that cluster together to makethenth car and its headway, the distance between the car and
a high density region in the lane. Cars move relatively fasthe preceding rf—1)th car. 7 is the time lag to reach the
outside the bunches, yielding one or more low density reoptimal velocityV(Ax) when the traffic flow changes. The
gions. The familiar “stop-go” like behavior is realized in the OV function V(Ax) is described by a hyperbolic tangent
congested flow, which is steady in the sense that the behavievith four positive parameterg, #, d, and o, which are
of the nth car is exactly the same as that of the precedinghosen to satisfyv(0)=¢— ntanfd/(20)]=0. We impose

Axn(t)—d)
20

. ()
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periodic boundary conditions,, . y=X,—L, whereN is the To this end, we discuss the relations of the model param-
total number of cars on a circuit of length All the model ~ €ters &, 7,d,o,N,L) in Eq. (1) with those in the ansatz
parameters £, &, 7,d,a,N,L) treated in this report are taken (3. (A,».8,6,9,C,h). As shown in Ref[18], we have the

to be dimensionless. It is sufficient for our purpose, as weelationsL=Nh, e=A, g=rv, as well as

will not directly compare our results with experimental data.

The trivial solution of the systeril) corresponds to the h—d=Aln 91(26—4.9) (4)
uniform flow x{®(t)=V(h)t—nh, where h=L/N is the 91(26+6,9)°
common headway. A linear analydi8,18] shows that for ,
—Ho+d<h<Hgy+d an initially prepared uniform flow be- _Ap d 91(6,9)
comes unstable and a congested flow develops. Hgres =5 %In 9,(25+B,9)9,(26—-8,9)° ®)
determined by
7 sinm/N P Ho ) C_gz_%i nml (6)
N oS o 2 27 dB 9.(26-8.,9)

Inclusion of the relation 2=n,/N with a givenn, makes
seven relations between the above two sets of seven param-
g eters: thus, we may construct exact solutions for a given set
of the model parameters. Here we restrict ourselves to the
casen,=1, for simplicity. (See Ref[18] for solutions with
Io(vt—(2n+1)B+6,9) ny# 1. The equationd= v is Whitham’s dispersion rela-
Fo (= (2nT1)B=0.0)" )  tion [8], an important characteristic of the delayed model. It
impliesx,,_1(t) =x,(t+27): 27 is the delay time for a car to
whereA, 8,v,C, § are constants to be written in terms of the repeat the behavior of the preceding car. Note khat and
model parameters, as shown belof(v,q) is one of the C—¢& change their signs whilg remains invariant when we
theta functions with the modulus parametein this report  replace & by 1—26.
the conventions in Refl18] are used for the theta functions  Let us show the presence of multiple solutions for a given
(99,91). It follows from the periodicity J¢(v+1,0) set (,¢,7,d,0,N,L). To obtain the parameters of the solu-
=Jy(v,q) that an integer BN=n,, turns out to be the num- tions, one first fixesA, »,B) using 28N=1. As the modulus
ber of bunches in the circular lane. The whole lane may bg@arameter, we use= —#/(Inq) instead ofg. By solving
divided intony, regions. The “wavelength’N/n, is approxi-  Eq. (5), 6 is computed as a function &f. It is given by Eq.
mately equal to the number of cars within a pair of consecu{18) in Ref.[18]. As a result of the property af discussed
tive high and low density regions. The width paramefer earlier, it has two branches$;(«) and &,(x) such that
which ranges in &226<1, determines the proportion of low 26;(x)=1—25,(«). Then substitution ob(«) into Eq. (4)
density region in a wavelength:6R/ny[(1—28)L/n,] is  gives us a functio(«). The result is shown in Fig. 1.
roughly equal to the number of cars in a Idhigh) density As shown in Fig. 1, the graph has the axis of symmetry
region. In this sense, by replacinggy 1—26, we ex- h=d. It should be noted thak(h) becomes a two-valued
change the lengths of the two regions. Upon differentiationfunction in the regionsll) and(lV). In each region, we have
the third term on the right-hand side of E®) gives rise to  two periodic solutions for a given set of the model param-
pairs of kinks and antikinks connecting,,, and v i - eters. Consider the regidiV). We have confirmed by nu-
A crucial point to observe the bifurcation is to recognize merical simulations that one solutiddenoted byA on the
the rich structure of the exact solutidB). Stable uniform  solid line in Fig. 1 is metastable, while the oth&tenoted by
flow always appears in the regidthy<<|h—d|. Unlike this, B on the broken line in Fig. )lis unstable: when a small
there must be critical values of the headwdy H; (H; perturbation is added, the latter goes down to the former or
>H,) such that the periodic solutions given by E) do  to a uniform flow with the same value bf Therefore, there
not exist for|h—d|>H, [19]: no congested flow is gener- are altogether three solutions in this region, indicating a sub-
ated if the mean density is too high or too low. Thus, thecritical bifurcation. The bifurcation points=d=*H, are de-
region forh can be divided into five partét) h>H;+d, (Il)  termined from Eqs(4) and(5) for x=0, which end up with
Ho+d<h<H;+d, () —Hy+d<h<Hy+d, (IV) —H;  Edq.(2). The value ofx for the critical valuesh=d=H; is
+d<h<—Hy+d, and(IV) —H;+d>h. We have uniform determined by
flow solutions over the whole region; they are unstable in the
region(lll). There are no congested flow solutionglihand
(V); the stable ones are known to appeatllh). In (Il) and
(IV), the stability of the uniform flow is confirmed against

where r,= o/ 5 is the critical time lag. In order for the uni-
form flow to decay,r should satisfy the condition> .. As
shown in Ref[10], the resulting congested flow is describe
by an analytical function of the form

Xp(t)=Ct—nh+Aln

Z(B)+

cn(2B)+dn(2B)—1 Z'(B)
sn(2B) - 2Z(B)

small perturbations only. Therefore other metastable solu- « L_cn(ZB)den(ZB)}

tions than the uniform flow may exist. Actually we shall B, sn(2B)

show that metastable as well as unstable periodic solutions

do coexist in these regions and that both are described by Eg. _ Z(2B)—Z(B) _ Z'(B) 7
(3). sn(2B) 2
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FIG. 1. The relation between the mean headwagnd «. The
solid and broken lines correspond (imetgstable and unstable so-
respectively. Here the parameters are-0.582 28,
é=tanh2, =1, d=2, 0=1/2, and N=20, for which H,

lutions,

K

=0.389 78 andH,;=0.562 90.

whereB=2K g (K is the complete elliptic integral of the

first kind) andZ is the Jacobi zeta function.
As an “order parameter,” we may take the velocity am- uniform flow, it is given by the product of the densityhl/

plitude Av of the relevant flow as a function & In Fig. 2
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h=d+H; there is another jump from a congested flow to a
uniform flow. (Although not indicated in the figure, jumps
occur ath=d+H, and h=d—H; when we decreash.)
This is the hysteresis phenomenon associated with the sub-
critical bifurcation. It is appropriate to explain how we per-
formed the simulations. Suppose we have a stable flow as a
result of the simulation at a value for the mean headway
sayhg. Taking a snapshot of the flow, we know the positions
of cars at the time. Then we measure the headway of each
car and increase it bxh, and that configuration is used as
the initial condition for the simulation with=hy+ Ah. This
procedure gives the results for the regidin, staying on the
curve for the congested flow: it is important to keep thie
small enough since the results depend on the initially pre-
pared configurations. Now we discuss the fundamental dia-
gram. In our numerical simulations, we observe a transition
from uniform flow to congested flow described by a one-
bunch analytical solution. In this process the system exhibits
a series of transitions through which it comes close to con-
figurations for multibunch solutions with successively fewer
buncheq10]. Each multibunch state lasts for a certain time
interval. So, in drawing the fundamental diagram, we may
have to take account of these intermediate states as well.
Although it is an interesting problem, we do not consider
such effects here.

The fluxQ may be defined by the number of cars passing
through some reference point in a certain time interval. For a

and the common velocity/(h), Q=V(h)/h. We calculate

we have drawn the analytical results with the solid and brothe flux of a congested flow as follows. Since high density
ken lines, which agree with the numerical simulations showrregions are moving backward with a velocity, it will be

with the small squares. The simulations are done by gradweonvenient to take the rest frame of the density waves. The
ally increasingh and the results foAv change as indicated period T, defined for a car to make a round trip in the rest

by the arrows: when we increakethere is a jump imv at

frame is given byTy=1/v=27N, where we have used

h=d—-H,, from a uniform flow to a congested flow; at Whitham’s relation[8], 8= rv=1/(2N). Since the average
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FIG. 2. Theh-Av relation from the exact solution, compared
with a numerical study. The simulations were done by increasing

0.6 T T

05 -

04 F

1|1 1 V%, v

03 | | L |
jJS/ h 06 0.7 08

0.2 03 04
FIG. 3. The fundamental diagram for traffic flow. The dotted

as indicated by the arrows; the results are plotted with the smaline is for uniform flow, while the solid and broken lines are for
squares. We observe a hysteresis phenomenon.

(metgstable and unstable congested flow, respectively.
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velocity of cars in the original coordinate iSTo—vg, the  set of model parameters so that the discontinuities appear
flux Qs given byQ=(L/To—vg)/h=1/(27) —vg/h. Letus  before the peak(3) As mentioned above, we should inves-
calculatev g by considering the repetitive spatiotemporal pat-tigate multibunch effects in detail before making a compari-
tern in a congested flowk, ;(t)=x,(t+27)+2vgr. This  SON With experimental data. » _ _
implies that thex, has the same time dependencexas In summary, the presence of subcritical Hopf_b|furcat|ons

o ' ! in a delayed optimal velocity model which admits exact so-
apart from a time delay 2and a distance @;7. It follows

N . , lutions is established by showing the coexistence of meta-
thatvg=h/(27) - C. Therefore, one obtains a simple expres-giapie and unstable soiutions. Although our results are ob-

sion forQ, Q=C/h. As discussed previously, one calculatestained in a specific OV model, we believe that any OV type
the parameteC as a function ofx using Eq.(6). Together model will show the subcritical bifurcations. Actually, we
with h(«), it givesC(h). Our analytical results are shown in have confirmed by numerical simulations the presence of
Fig. 3: discontinuities in the traffic flow show up as a resultmultiple stable solutions for the model given by,

of a hysteresis phenomenon. Since the size of the discontinu- a[V(Ax,) —X,] which was studied ifi17] in this context.

ous jumps may be determined analytically, a quantitativerperefore, our results given here should be considered, at

comparison is also possible. least qualitatively, to be a universal feature of OV models
A few comments are in ordefl) The presence of the describing spatiotemporal patterns.

subcritical Hopf bifurcations naturally defines the boundaries

between(l) and(Il) and betweerilV) and(V). (2) In Fig. 3, Parts of our numerical work were done with the computer
the discontinuities in the low density side appear after passacilities of Yukawa Institute for Theoretical Physics. We are
ing through the maximum uniform flow. Since the position grateful to K. Nishinari, H. Hayakawa, and Y. Ono for dis-
of the peak is determined by the OV function, we may take acussions and suggestions.
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